Ulam stability problem for a mixed type of cubic and additive functional equation
نویسندگان
چکیده
منابع مشابه
Orthogonal stability of mixed type additive and cubic functional equations
In this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$ is orthogonality in the sense of Ratz.
متن کاملorthogonal stability of mixed type additive and cubic functional equations
in this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$ is orthogonality in the sense of ratz.
متن کاملStability of a Mixed Type Additive, Quadratic and Cubic Functional Equation in Random Normed Spaces
In this paper, we obtain the general solution and the stability result for the following functional equation in random normed spaces (in the sense of Sherstnev) under arbitrary t-norms f(x + 3y) + f(x− 3y) = 9(f(x + y) + f(x− y))− 16f(x).
متن کاملA new type of Hyers-Ulam-Rassias stability for Drygas functional equation
In this paper, we prove the generalized Hyers-Ulam-Rassias stability for the Drygas functional equation$$f(x+y)+f(x-y)=2f(x)+f(y)+f(-y)$$ in Banach spaces by using the Brzc{d}ek's fixed point theorem. Moreover, we give a general result on the hyperstability of this equation. Our results are improvements and generalizations of the main result of M. Piszczek and J. Szczawi'{n}ska [21].
متن کاملOn the Hyers-Ulam Stability of a General Mixed Additive and Cubic Functional Equation in n-Banach Spaces
and Applied Analysis 3 Definition 1.4. A sequence {xk} in an n-normed space X is said to converge to some x ∈ X in the n-norm if lim k→∞ ∥ ∥xk − x, y2, . . . , yn ∥ ∥ 0, 1.4 for every y2, . . . , yn ∈ X. Definition 1.5. A sequence {xk} in an n-normed space X is said to be a Cauchy sequence with respect to the n-norm if lim k,l→∞ ∥ ∥xk − xl, y2, . . . , yn ∥ ∥ 0, 1.5 for every y2, . . . , yn ∈ X...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Bulletin of the Belgian Mathematical Society - Simon Stevin
سال: 2006
ISSN: 1370-1444
DOI: 10.36045/bbms/1148059462